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Motivation — Sentence Embedding Models

* Similarity comparison of sentences/short texts
* Important for multiple downstream tasks
* SBERT fails to capture rich factual knowledge [1]

— Injecting factual knowledge from Knowledge
Graphs
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Motivation — Adapters TUT

* Training large LMs is resource-intensive
— Adapters can alleviate this problem

* Pretrained once, ,Plug’'n’Play” for different use cases
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Adapters

* Freeze large basemodel

* Add trainable Adapter-Layers at multiple
layers of the basemodel
— Leverage learned knowledge from the

basemodel

* Train with less parameters (3.6%),
finetune basemodel-behaviour on different
task
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Adapter-Architectures - Houlsby

* First Adapter to be developed
* Focus: ,Catastrophical Forgetting*
* Initialized to the ldentity-Function

* 3.6% of Parameters
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Adapter-Architectures - Pfeiffer

* Focus: ,Merging of Adapters*

* 9% of Parameters
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Adapter-Architectures - K-Adapter

* Very recent paper

* Focus: ,Combining knowledge from
Adapters”

* Initialized Randomly

* 13-40% of Parameters
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Problem Statement UM

* Sentence Embedding Models fail to encode factual knowledge [1]

* Enhance Sentence Embedding Models by injecting Knowledge through Adapters
* Inject structured knowledge from Knowledge Graphs

— RQ1: How to inject structured knowledge into SE-Models using Adapters?
— RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding Models?

* Domain-specific data is scarce. How can we approach domain-adaptation through Adapters?
— RQ3: How to combine domain-specific knowledge adapters for the scholarly domain?
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Suitability of Adapters for STS-Tasks

* Basemodel: roberta-large

* Finetuning Adapters on Common-World TREx-rc dataset

* (Contrastive Loss

* Evaluated against 7 STS-Tasks (Spearman Correlation)

Model STS12 | STS13 | STS14 | STS15 | STS16 | STS-B. | SICK-R. | Avg.
Houlsby-Adapter 76.69 | B6.87 | 8218 | 86.30 | 84.14 | 86.87 79.59 | 83.23
Pfeiffer-Adapter 7793 | 87.00 | 82.60 | 87.31 | 83.50 | 86.74 80.92 83.71
K-Adapter 76.00 | 86.93 | 81.28 | B6.50 | 83.76 | 86.23 80.08 | 82.97
Finetuned roberta-large | 77.87 | 87.24 | 8256 | 87.17 | 84.62 | 86.26 79.93 | 83.68
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Domain-Adaptation in STS-Tasks TUT

* Enhance generic STS-basemodel with domain-specific Adapter
* Basemodel: princeton-nlp/sup_simcse_bert_base (Pretrained on a common-world NLI-dataset)
* Training on 2 domain-specific datasets: AskUbuntu, SciDocs

* Usage of 2 loss-functions

(1 = max{(d(hi, h;") — d(h;,h; ) +m),0}

ﬁsiwn(hi ,h; )/ T

(o = —log }
N sim(h; h' )/T sim(h;.h . T
Z,?:ﬂﬁ ik )/ +e R )
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Domain-Adaptation on STS-Tasks TUT

* Evaluation on 90%/10% training sets

* Houlsby Adapter performs the best

Datasets — AskUbuntu SciDocs Average
Models | Cite CC CR CV
Chut-of-the-box StmCSE (lower bound) 60.3 793 8210 7087 7836 | 7539
Houlsby-Adapter 64.0 88.2 8869 8242 8399 | S8l46
¢, Pfeiffer-Adapter 638 878 88.73 Bl.65 8327 | 8105
K-Adapter 62.5 856 87.70 B0.09 8285 )| 79.75
In-domain supervised SimCSE (upper bound) 653 88.0 8774 84.15 8332 | 8170
Houlsby-Adapter 64.5 873 B89.01 5241 8442 | B81.53
i Pfeiffer- Adapter 642 870 8863 B198 8441 81.24
- K-Adapter 62.8 853 8792 BR0.05 8329 | T79.87

In-domain supervised SIMCSE {upper bound) 65.2 88.3 B8B.11 8446 8363 | B1.94
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Unsupervised improvement through STS-Adapters

* Unsupervised Learning on TREx-rc

* Initialization using frozen supervised pretrained Adapters

Model STS12 | STS13 | STS14 | STS15 | STS16 | STS-B. | SICK-R. | Avg.
Unsupervised 71.27 | 83.75 | 7526 | 85.04 | 81.17 | 81.69 70.84 | 78.43
Houlsby-Adapter | 73.37 | 84.89 | 76.21 | 87.24 | 83.17 | 81.75 72.63 | 79.90
Pfeiffer-Adapter | 72.49 | 83.62 | 76.14 | 85.54 | 82.63 | 81.55 7243 | 79.20
K-Adapter 7247 | 83.55 | 7520 | 85.09 | 82.42 | 81.64 71.80 | 78.88
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Conclusion

* RQ1: How to inject structured knowledge into SE-Models with Adapters?
* Knowledge from KGs has successfully been learned.
* Data-triples have been learned by a constrastive approach.
* Very similar performance to finetuning the entire model.
* Results obtained with two different loss-functions.
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Conclusion UM

* RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding Models?

* Similar performance compared to finetuning the entire basemodel.
— Less Parameters used.

* Improvement of unsupervised methods by initializing with supervised Adapters.
— Improvement by introducing a cheap way to finetune a SE-model to new data and new domains.
* No architecture was found that consistently outperforms the others.
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Conclusion UM

* RQ3: How to combine domain-specific knowledge adapters for the scholarly domain?
* Combination has not been looked into.
* Domain-Adaptation has been assessed over 2 datasets.
* Successful domain-adaptation.
* Very similar performance to the finetuning of the entire basemodel. But slightly worse!
— No evidence of combining knowledge of the basemodel and the Adapter.
* Houlsby- and Pfeiffer-Adapter performed very similarly.
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Thank you for your attention TUT

* Any questions?
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