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Motivation – Sentence Embedding Models

● Similarity comparison of sentences/short texts
● Important for multiple downstream tasks
● SBERT fails to capture rich factual knowledge [1]

→ Injecting factual knowledge from Knowledge 
Graphs
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RoBERTa
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Motivation – Adapters

● Training large LMs is resource-intensive

→ Adapters can alleviate this problem
● Pretrained once, „Plug’n’Play“ for different use cases
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Adapters
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RoBERTa
Adapter-Layer

Adapter-Layer

Adapter-Layer

Input-Sentences

RoBERTa

Input-Sentences
● Freeze large basemodel
● Add trainable Adapter-Layers at multiple 

layers of the basemodel
→ Leverage learned knowledge from the 
basemodel

● Train with less parameters (3.6%), 
finetune basemodel-behaviour on different 
task
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Adapter-Architectures - Houlsby
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RoBERTa

Adapter-Layer

Adapter-Layer

Adapter-LayerAdapter-LayerAdapter-Layer

Input-Sentences
● First Adapter to be developed
● Focus: „Catastrophical Forgetting“
● Initialized to the Identity-Function
● 3.6% of Parameters
● Bottleneck-Adapter:
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Adapter-Architectures - Pfeiffer
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RoBERTa

Adapter-Layer

Adapter-Layer

Adapter-LayerAdapter-LayerAdapter-Layer

Input-Sentences
● Focus: „Merging of Adapters“
● 9% of Parameters
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Adapter-Architectures - K-Adapter
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RoBERTa
Adapter-Layer

Adapter-Layer

Adapter-Layer

Input-Sentences
● Very recent paper
● Focus: „Combining knowledge from 

Adapters“
● Initialized Randomly
● 13-40% of Parameters
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Problem Statement

● Sentence Embedding Models fail to encode factual knowledge [1]
● Enhance Sentence Embedding Models by injecting Knowledge through Adapters

● Inject structured knowledge from Knowledge Graphs

→ RQ1: How to inject structured knowledge into SE-Models using Adapters?

→ RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding Models?
● Domain-specific data is scarce. How can we approach domain-adaptation through Adapters?

→ RQ3: How to combine domain-specific knowledge adapters for the scholarly domain?
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Suitability of Adapters for STS-Tasks 

● Basemodel: roberta-large
● Finetuning Adapters on Common-World TREx-rc dataset
● Contrastive Loss
● Evaluated against 7 STS-Tasks (Spearman Correlation)
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Domain-Adaptation in STS-Tasks

● Enhance generic STS-basemodel with domain-specific Adapter
● Basemodel: princeton-nlp/sup_simcse_bert_base (Pretrained on a common-world NLI-dataset)
● Training on 2 domain-specific datasets: AskUbuntu, SciDocs
● Usage of 2 loss-functions
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Domain-Adaptation on STS-Tasks

● Evaluation on 90%/10% training sets
● Houlsby Adapter performs the best
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Unsupervised improvement through STS-Adapters

● Unsupervised Learning on TREx-rc
● Initialization using frozen supervised pretrained Adapters
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Conclusion

● RQ1: How to inject structured knowledge into SE-Models with Adapters?
● Knowledge from KGs has successfully been learned.
● Data-triples have been learned by a constrastive approach.
● Very similar performance to finetuning the entire model.
● Results obtained with two different loss-functions.
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Conclusion

● RQ2: Do Knowledge Adapters improve information retrieval tasks of Sentence Embedding Models?
● Similar performance compared to finetuning the entire basemodel.

– Less Parameters used.
● Improvement of unsupervised methods by initializing with supervised Adapters.

→ Improvement by introducing a cheap way to finetune a SE-model to new data and new domains.
● No architecture was found that consistently outperforms the others.
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Conclusion

● RQ3: How to combine domain-specific knowledge adapters for the scholarly domain?
● Combination has not been looked into.
● Domain-Adaptation has been assessed over 2 datasets.
● Successful domain-adaptation.
● Very similar performance to the finetuning of the entire basemodel. But slightly worse!

→ No evidence of combining knowledge of the basemodel and the Adapter.
● Houlsby- and Pfeiffer-Adapter performed very similarly.
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Thank you for your attention

● Any questions?
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